With ever exhausting non-renewable materials, building technology has developed and evolved to provide better habitable spaces though decades. Although sensitivity towards environment and resources has been persistent, we now have tools aiding architects and engineers to design buildings with more precision towards energy efficiency, and minimizing the use of non-renewable resources, in many ways.

Energy Simulation is becoming a matter of public concern with rapidly rising population numbers. Growing production in all sectors is exponentially increasing demand for energy. Almost 40% of all resources today are consumed by residential, commercial and public sectors, together with the industry sector, making it the primary source of energy usage.

Buildings: primary consumers of energy (Courtesy of: www.bosch-presse.de)

Buildings: primary consumers of energy (Courtesy of: www.bosch-presse.de)

Until recently, typical energy-control methodologies like natural ventilation, orientation according to solar paths and adaptation to different climate zones through local architecture were how society controlled basic energy efficiency, relying on non-renewable resources to do the rest. The design process involving energy aspects was strictly divided into two ramifications- architecture and engineering.

Chimney as a passive cooling system (Coutesy of: www.michaellu.com)

Chimney as a passive cooling system (Coutesy of: www.michaellu.com)

 

Then came one of the biggest energy crisis of 1970’s with petroleum shortages affecting all major economies, making the world understand significance of finite-sources and importance of controlled energy usage. It was not until 1992 though, with Kyoto protocol for bringing down climate change and set basic guidelines which today are translated into energy standards and low-impact buildings certifications like LEED or BREEAM which limit/reduce CO2 impact of buildings.

Energy and building technology (Courtesy of: www.bosch-presse.de)

Energy and building technology (Courtesy of: www.bosch-presse.de)

With this change in outlook and advancements in technology, materials, climate control systems, the need for more technologically relevant tools to test out these key-points translated into computer software we use today. Multiple plugin engines like DOE2, EnergyPlus and eQuest are available for easy integration with existing 3D-CAD/BIM software tools used by architects and engineers, which translate the input data into information files, eQuest being most widely used graphical energy analysis tool, making an easier task of reviewing analysis data in a 3D environment instead of plain and sometimes incomprehensible tables and forms.

(Courtesy of: www.docstoc.com)

(Courtesy of: www.docstoc.com)

The Legacy OpenStudio Plug-in, for example, makes it easy to create and edit building geometry in EnergyPlus input files. It also allows to launch EnergyPlus simulations and view the results within SketchUp, which is used as a parent software here.

(Courtesy of: www.psdconsulting.com)

(Courtesy of: www.psdconsulting.com)

Another software tool, DesignBuilder can enable a full design team to use the same software to develop comfortable and energy-efficient building designs from concept through to completion, with packages for engineers, architects and energy assessors covering performance indicators such as energy consumption, carbon emissions, thermal comfort, daylight availability and cost.

(Courtesy of: www.prweb.com)

(Courtesy of: www.prweb.com)

Rapid development of simulation tools in the building industry has allowed architects to experiment with even more bold designs, making possible structures which were not feasible in the past. Simulating and testing the high-rise building Shanghai Tower by Gensler, due to open to the public in 2015, in a virtual environment was critical for successful performance.

Shanghai Tower, completed this year (Courtesy of Gensler: www.gensler.com)

Shanghai Tower, completed this year (Courtesy of Gensler: www.gensler.com)

Shanghai Tower, completed this year (Courtesy of Gensler: www.gensler.com)

Shanghai Tower, completed this year (Courtesy of Gensler: www.gensler.com)

Shanghai Tower underwent testing using Autodesk Ecotect Analysis software, and by incorporating sustainable practices, Shanghai Tower is at the forefront of a new generation of high-rise towers. Gensler aims for their ground-breaking design to hold a LEED Gold rating and a China 3 Star rating, being the highest level of performance made only possible through consistent testing during the design stage of the project.

Arch2O-Energy Simulation Tools used in Architectural Practice-010

Simulation testing Shanghai Tower (Courtesy of Gensler: www.gensler.com)

Testing on the Shanghai Tower produced a structure and shape that reduces wind loads by 24% which in turn resulted in a saving of $58 million in constrsuction costs. This also gave the possibility for greater sustainability – vertical-axis wind turbines  will generate up to 350,000 kWh of supplementary electricity per year. Simulation tools are crucial in facilitating architects on implementing energy efficiency aspects from the conception of design process.

 Simulation testing Shanghai Tower (Courtesy of Gensler: www.gensler.com)


Simulation testing Shanghai Tower (Courtesy of Gensler: www.gensler.com)

Result of testing wind loads (Courtesy of Gensler: www.gensler.com)

Result of testing wind loads (Courtesy of Gensler: www.gensler.com)

The tower features elements such as an innovative curtain wall suspended from the mechanical floors, to carry the load of a transparent ‘glass skin’. The double-layered insulating glass facade is calculated to reduce the need for indoor air conditioning, and is made of a reinforced glass with a high tolerance for temperature changes.

Curtain wall simulation testing (Courtesy of Gensler: www.gensler.com)

Curtain wall simulation testing (Courtesy of Gensler: www.gensler.com)

Curtain wall (Courtesy of Gensler: www.gensler.com)

Curtain wall (Courtesy of Gensler: www.gensler.com)

CSI SAP 2000 software was crucial in doing wind tunnel tests to simulate the region’s natural forces, while the test results would actually refine the towers shape. This cross over between design and engineering in recent years demonstrates how high-rise building simulations are developing at a rapid rate.

Arch2O-Energy Simulation Tools used in Architectural Practice-015

CSI SAP 2000 analysis software (Courtesy of CSI: www.csiamerica.com)

 The resulting impact has intensified collaborations of architects, specialists and engineers and the challenging task of inter-disciplinary coordination is being tested. Collaboration of professionals, which has always been essential in energy efficient design, has become more vital than ever. As a result, architectural profession is being placed under considerable new pressures, which only hint at what the future may hold for energy efficiency and building simulation. The above stated building demonstrates the art of building from parts to whole like any conventional building and its components, but the parts here emphasize on the energy efficient simulations which has a chain link effect on the whole building. Energy efficiency simulation techniques are emerging to become a way of practice in architecture which in future will form the crux of building design and construction technology.

Written By: Sushant Verma, Lucy Cassels, Boris Timev

 

Leave a Reply